Skip to main content
Log in

Biological effects of cyclosporin A on CD3CD161+ and CD3+CD161+ lymphocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cyclosporin A (CSA) is a widely used drug to prevent the immune cell function. It is well known that CSA blocks transcription of cytokine genes in activated T cells. The connection between T cells and CSA has been well established. However, the effect of CSA on natural killer (NK) cells is not thoroughly understood. Therefore, in the present study, splenocytes and peripheral blood mononuclear cells (PBMCs) were treated with CSA in the presence of concanavalin A (Con A) or interleukin-2 (IL-2). CSA at higher concentrations induces apoptosis and inhibition of proliferation, while lower concentrations showed synergistically enhanced proliferation in splenocytes and PBMCs. Further, CSA favored the in vitro conversion of CD3+CD161+ cells. Splenocytes and PBMC were found to have synergistic proliferation with Con A, and PBMC exhibited significantly higher expression of NKp30, NKp44, and granzyme B along with enhanced cytotoxicity against K-562 cells in CSA-treated animals. Proliferation assay also showed that proliferation of CD161+ cells was higher in CSA-treated animals. Collectively, our results suggest that CSA differentially influences the population, function, and expression of the NK cell phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kosugi A, Shearer GM (1991) Effect of cyclosporin A on lymphopoiesis. III. Augmentation of the generation of natural killer cells in bone marrow transplanted mice treated with cyclosporin A. J Immunol 146:1416–1421

    CAS  PubMed  Google Scholar 

  2. Gummert JF, Ikonen T, Morris RE (1999) Newer immunosuppressive drugs: a review. J Am Soc Nephrol 10:1366–1380

    CAS  PubMed  Google Scholar 

  3. Tedesco D, Haragsim L (2012) Cyclosporine: a review. J Transplant. https://doi.org/10.1155/2012/230386

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kosugi A, Sharrow SO, Shearer GM (1989) Effect of cyclosporin A on lymphopoiesis I. Absence of mature T cells in thymus and periphery of bone marrow transplanted mice treated with cyclosporin A. J Immunol 142:3026–3032

    CAS  PubMed  Google Scholar 

  5. Kahan BD (1982) Cyclosporin A: a selective anti-Tcell agent. Clin Haematol 11:743–761

    CAS  PubMed  Google Scholar 

  6. Gao EK, Lo D, Cheney R, Kanagawa O, Sprent J (1988) Abnormal differentiation of thymocytes in mice treated with cyclosporin A. Nature 336:176–179

    Article  CAS  PubMed  Google Scholar 

  7. Morris PJ, Chapman JR, Allen RD (1987) Cyclosporin conversion versus conventional immunosuppression: long-term follow-up and histological evaluation. Lancet 8533:586–591

    Article  Google Scholar 

  8. Biron CA (1997) Activation and function of natural killer cell responses during viral infections. Curr Opin Immunol 9:24–34

    Article  CAS  PubMed  Google Scholar 

  9. Moretta A, Bottino C, Vitale M, Pende D, Migari MC, Biassoni R, Moretta L (2001) Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19:197–223

    Article  CAS  PubMed  Google Scholar 

  10. Lanier LL (2008) Upon the tightrope: natural killer cell activation and inhibition. Nat Immunol 9:495–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McNerney ME, Lee KM, Zhou P et al (2006) Role of natural killer cell subsets in cardiac allograft rejection. Am J Transplant 6:505–513

    Article  CAS  PubMed  Google Scholar 

  12. Palacios R (1982) Concanavalin A triggers T lymphocytes by directly interacting with their receptors for activation. J Immunol 128:337–342

    CAS  PubMed  Google Scholar 

  13. Denyer MS, Wileman TE, Cartina MA, Zuber SB, Takamatsu H (2006) Perforin expression can define CD8 positive lymphocyte subsets in pigs allowing phenotypic and functional analysis of natural killer, cytotoxic T, natural killer T and MHC un-restricted cytotoxic T-cells. Vet Immunol Immunopathol 110:279–292

    Article  CAS  PubMed  Google Scholar 

  14. Eruslanov E, Kusmartsev S (2010) Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol (Methods and Protocols) 594:57–725

    Article  CAS  Google Scholar 

  15. Wang H, Grzywacz B, Sukovich D, McCullar V, Cao Q, Lee AB, Blazar BR, Cornfield DN, Miller JS, Verneris MR (2007) The unexpected effect of cyclosporin A on CD56+CD16 and CD56+CD16+ natural killer cell subpopulations. Blood 110:1530–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alamartine E, Sabido O, Berthoux F (1994) In-vitro effects of cyclosporin A, FK506, 6-mercaptopurine, and prednisolone on lymphokine-activated killer cells. Nephrol Dial Transplant 9:1456–1461

    CAS  PubMed  Google Scholar 

  17. Macho A, Blanco-Molina M, Spagliardi P, Appendino G, Bremner P, Heinrich M, Fiebich BL, Munoz E (2004) Calcium inophoretic and apoptotic effects of ferutinin in the human Jurkat T-cell line. Biochem Pharmacol 68:875–883

    Article  CAS  PubMed  Google Scholar 

  18. Naujokat C, Daniel V, Bauer TM, Sadeghi M, Opelz G (2003) Cell cycle- and activation-dependent regulation of cyclosporin A-induced T cell apoptosis. Biochem Biophys Res Commun 310:347–354

    Article  CAS  PubMed  Google Scholar 

  19. Trinchieri GM, Matsumoto-Kobayashi SC, Clark J, Seehra L, London L, Perussia B (1984) Response of resting human peripheral blood natural killer cells in interleukin 2. J Exp Med 160:1147–1169

    Article  CAS  PubMed  Google Scholar 

  20. Biron CA, Young HA, Kasaian MT (1990) Interleukin 2-induced proliferation of murine natural killer cells in vivo. J Exp Med 171:173–188

    Article  CAS  PubMed  Google Scholar 

  21. Keskin DB, Allan DS, Rybalov B (2007) TGFbeta promotes conversion of CD16 + peripheral blood NK cells into CD16-NK cells with similarities to decidual NK cells. Proc Natl Acad Sci USA 104:3378–3383

    Article  CAS  PubMed  Google Scholar 

  22. Shin GT, Khanna A, Ding R (1998) In vivo expression of transforming growth factor-beta1 in humans: stimulation by cyclosporine. Transplantation 65:313–318

    Article  CAS  PubMed  Google Scholar 

  23. Minguillon J, Morancho B, Kim SJ, Lopez-Botet M, Aramburu J (2005) Concentrations of cyclosporin A and FK506 that inhibit IL-2 induction in human T cells do not affect TGF-beta1 biosysnthesis, whereas higher doses of cyclosporin A trigger apoptosis and release of preformed TGF-beta 1. J Leukoc Biol 77:748–758

    Article  CAS  PubMed  Google Scholar 

  24. Introna M, Allavena P, Spreafico F, Mantovani A (1981) Inhibition of human natural killer activity by cyclosporin A. Transplantation 31:113–116

    Article  CAS  PubMed  Google Scholar 

  25. Wai L, Fujiki M, Takeda S, Martinez OM, Krams SM (2008) Rapamycin, but not cyclosporin or FK506, alters natural killer cells function. Transplantation 85:145–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A3B03029075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Hoon Kim.

Ethics declarations

Conflict of interest

These authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 348 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adithan, A., John Peter, J.S., Hossain, M.A. et al. Biological effects of cyclosporin A on CD3CD161+ and CD3+CD161+ lymphocytes. Mol Cell Biochem 458, 159–169 (2019). https://doi.org/10.1007/s11010-019-03539-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03539-2

Keywords

Navigation